Particle configurations for branching Brownian motion with an inhomogeneous branching rate

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slowdown for time inhomogeneous branching Brownian motion

We consider the maximal displacement of one dimensional branching Brownian motion with (macroscopically) time varying profiles. For monotone decreasing variances, we show that the correction from linear displacement is not logarithmic but rather proportional to T . We conjecture that this is the worse case correction possible.

متن کامل

Branching Brownian motion with an inhomogeneous breeding potential

This article concerns branching Brownian motion (BBM) with dyadic branching at rate β|y| for a particle with spatial position y ∈ R, where β > 0. It is known that for p > 2 the number of particles blows up almost surely in finite time, while for p = 2 the expected number of particles alive blows up in finite time, although the number of particles alive remains finite almost surely, for all time...

متن کامل

Slowdown in branching Brownian motion with inhomogeneous variance

We consider the distribution of the maximum MT of branching Brownian motion with time-inhomogeneous variance of the form σ(t/T ), where σ(·) is a strictly decreasing function. This corresponds to the study of the time-inhomogeneous Fisher–KolmogorovPetrovskii-Piskunov (FKPP) equation Ft(x, t) = σ (1− t/T )Fxx(x, t)/2 + g(F (x, t)), for appropriate nonlinearities g(·). Fang and Zeitouni (2012) s...

متن کامل

Hyperbolic branching Brownian motion

Hyperbolic branching Brownian motion is a branching di usion process in which individual particles follow independent Brownian paths in the hyperbolic plane H2, and undergo binary ssion(s) at rate ¿0. It is shown that there is a phase transition in : For 51=8 the number of particles in any compact region of H2 is eventually 0, w.p.1, but for ¿1=8 the number of particles in any open set grows to...

متن کامل

Branching Brownian Motion with “mild” Poissonian Obstacles

We study a spatial branching model, where the underlying motion is Brownian motion and the branching is affected by a random collection of reproduction blocking sets called mild obstacles. We show that the quenched local growth rate is given by the branching rate in the ‘free’ region . When the underlying motion is an arbitrary diffusion process, we obtain a dichotomy for the local growth that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ALEA-Latin American Journal of Probability and Mathematical Statistics

سال: 2023

ISSN: ['1980-0436']

DOI: https://doi.org/10.30757/alea.v20-28